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“Divide et Impera” to Dramatically and Consciously  
Simplify Design 

The mental/instance path - How reasoning among spaces, components 
and goals

Antonio Fioravanti1, Gianluigi Loffreda2, Davide Simeone3, Armando Trento4 
Sapienza University of Rome - Italy.
http://dau.uniroma1.it  
1antonio.fioravanti@uniroma1.it, 2gianluigi.loffreda@uniroma1.it, 3davide.simeone@
uniroma1.it, 4armando.trento@uniroma1.it.

Abstract. In our times, in a complex and universal village where problems are 
intertwined and pervasive beyond our imagination, we need new approaches to deal 
with them – appropriately. In a previous work we highlighted the importance to 
reason ontologies: a ‘world’ f.i. a building – as a mental image – is not a Linnaeus’s 
classification (structured set of entities) but a system (goals oriented set of classes) able 
to reasoning upon selectively chosen entities belonging to different Realms (ontology 
universes) (Fioravanti et al., 2011a). The general aim of our research– to be an effective 
aid to design – is to simulate wo/man as designer and user of designed spaces, hence how 
mental skill can be computably included in new tools able to tackle these problems. This 
paper is focused on the first role: how actor-designers approach design problems and 
how the inference mechanism can help them and affect the design process. A ‘Building 
Object’ - the dual system of Spaces and Technology elements – is inferred in several ways 
according to different goals and the inference mechanism can, simulating human mental 
shortcuts, optimize thinking. 
Keywords. Design process; design operational theory; thinking optimization; inferential 
mechanisms; human-machine collaboration.

INTRODUCTION: ‘AIDED’ DESIGN 
In the world, which has become a single global vil-
lage characterized by increasingly complex rela-
tions, interdependence and now universal prob-
lems, we need tools and methods in order to ‘predict 
and govern future situations’ – i.e. design – that 
should be at the same time “simple” in order to fo-
cus the attention on possible concrete and realistic 
solutions.

Reflections upon these tools and methods accom-
pany the history of humankind and these were more 
and more systematically developed and deeply ex-
plored from industrialization age on. Simon (1996) 
claims that in Industry Age there is progress (also 
meant in a broader sense as quality and quality con-
trol), when a certain work is freed from worker per-
sonal skills.

fioravanti
Sottolineato

fioravanti
Sottolineato

fioravanti
Sottolineato
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This statement can be considered valid also in Post-
industry Age when the most distinctive activity is 
design and beside the original concept “to substi-
tute human skill” new concepts rose: to support, to 
complement and to aid humans. Nowadays the key 
word could be “to enhance human capacities”. 

Consequently, the basic idea pervading our 
CAAD community is that, by freeing the designer 
from tasks that can be progressively delegated to 
ICT, s/he can concentrate her/his efforts and crea-
tivity on higher level problems with which, for the 
time being, ICT has greater difficulty in coping till 
now. Nevertheless these limits are moving ahead: 
designer possibility horizon becomes wider. In this 
approach an explicit man-machine ‘collaboration’ 
is declared: the research group is thus in the main-
stream of pure computed ‘aided’ design in which the 
designer can, at any time, turn off the design aids/
constraints of application programs. At the same 
time, in full awareness, the designer can rely on the 
default mechanism which allows, at any step of the 
process, ICT entities to be instantiated, albeit only as 
regular values (namely the defaults). The research 
group is  therefore a considerable distance from the 
philosophy of “automated design”.

In actual fact, the pioneering and initial phase 
of Computer Aided Architectural Design is over and 
tools, a time focused on number processing and on 
verifying that equations referring to physical phe-
nomena are respected, are now cleverly directed to-
wards solving  higher level problems, but are often 
inadequate for this purpose.

NEW AIMS FOR CAD: FROM AIDED TO 
‘ENHANCED’
In order to be effective and achieve a quantum leap 
in the field of Computer ‘Enhanced’ Architectural 
Design - CEAD -, the model of the building  its defi-
nition and its behaviour - i.e. architectural design - 
must take into account:t:
•	 Relations between the building and “wo/man” 

in all his complexity, corporeality and sensitivity. 
To do this it is necessary for “material humans” 
(like super-avatars) to be as realistic as possible 

in order to interact with the building - digital 
physicality.

•	 Logical processes on associated entities to define 
the building and the relevant design process. 
Reasoning procedures need to optimize the 
search path (for the solution, for constraint 
checking, for instantiation, etc.), so it is useful 
to imitate the designer’s mental path as experi-
enced for centuries. The digital world needs to 
be brought closer to the real world through the 
omnicomprehensive nature of all its parame-
ters, including both physical characteristics and 
human arguments – physical digitality.

This view leads us to appreciate that the current ar-
chitectural design models (made up of the building 
and the process) have two shortcomings: on the one 
hand, a short-sighted view of the role of ‘material hu-
mans’ in using the building, in exploiting it culturally, 
in enjoying an aesthetic gratification; on the other, 
dull inference engines used to logically process and 
to explore knowledge that they ultimately populate 
with instances the knowledge domain on which 
they act. The first point is not treated in the present 
paper; however, research by our group is now under 
way. The second point is instead the subject of the 
present paper: Inference Engines and how they in-
stance prototypes.

OBJECTIVE: ‘COLLABORATIVE’  
COMPUTER
Traditional methodologies and tools, based on 
meetings and direct interaction among actors are 
very efficient in dealing with architectural design 
problems, but have shown their limits in present 
design process characterized by a high degree of 
inter-disciplinarity, delocalization of activities, sub-
division of activities, timely use of information and 
the correct use of the more advanced methods and 
technologies, - in a word: complexity.

In order to manage these problems effectively 
it is necessary to develop new methodologies and 
innovative tools. At present, among the forms of 
actors’ interaction in the design process, the Col-
laborative Design paradigm (Kvan, 2000; Woo et al., 
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2001; Cheng and Nancy, 2003, Peng and Gero, 2007, 
Carrara et al., 2009) has peculiar advantages that fit 
such problems neatly.

The fundamental bases of collaboration reside 
in knowledge (understanding, timely, appropriate), 
consent (social habits, joint results) and in the way 
it is communicated among designers (real time, to 
whom, how much, selectively, device).

However, a knowledge-based system for ar-
chitectural design (Carrara and Fioravanti, 2010) 
before ‘enhancing’ collaborations among different 
specialised designer teams -’external’ collaborations- 
should enhance collaboration within the specialist 
designer team -‘internal’ collaboration-. Such new 
knowledge-based systems leverage collaboration 
between a designer and her/his specialist knowl-
edge -her/his ontology- . To realize such an ‘internal’ 
and afterword, ‘external’ collaborations it is needed a 
‘new’ building model able to include these charac-
teristics.

TECHNOLOGY LACUANAE AND  
‘SYSTEMIC’ BUILDING MODEL
In the CAAD community a number of efforts have 
been devoted to overcoming these problems in or-
der to integrate competencies into a single applica-
tion program and to store and share knowledge. De-
sign is much more than describing a component of 
a building (Archea, 1987) as it is an activity aimed at 
helping the actor-designer to conceive of artefacts, 
to record expertise, to implement experience-based 
design rules and at “... changing existing situations 
into preferred ones” (Simon, 1996, pg. 111).

These aims are difficult to reach as technology 
and methodology lacunae of present application 
programs to realize and implement such objec-
tives mainly due to the lack of an overall and unitary 
model of the building that is effective for actor-
designers and user, representative of its complex-
ity and even capable of introjecting aspirations and 
processing them.

Nowadays the formal representation of BIM and 
IFC does not contemplate these aspects as they con-
sider a building as an assembly of entities of classes 

(class = hierarchical set of entities).
A building is instead an ‘actual’ system: several 

classes (ontologies) directed towards goals (e.g. 
habitability, energy saving, constructability, etc.) 
(Fioravanti et al., 2011a).

To make possible a ‘systemic’ building model, 
the Research Group has formalized:
•	 specialist knowledge by means of ontologies - 

Knowledge Structures, KSs - in the field of Ar-
chitectural Design and that can be amplified 
during the design work so as to capitalize on 
the knowledge and design rules and to effec-
tively aid  a designer ‘on tap’. 

•	 Relational Structures and Inference Engines that 
selectively relate entities, concretely instance 
these entities and push the instantiation pro-
cess towards a goal (instantiation rules: priority, 
exclusion, congruency).

The above-mentioned model is based on a highly 
structured, formal representation of the knowledge 
used along the whole design process, expressed by 
means of Knowledge Structures. 

The Knowledge Structures – KSs – are basically 
all structured in the same way: a set of ontology, cor-
responding to the ‘objects’ the final product is made 
of (physical elements, spaces, site, etc.).

The objects on which the design process acts 
are:
•	 Space Units (SUs), organized in Building Units 

(BU) the building is spatially made of.
•	 Functional Elements (FEs), organized in Func-

tional SubSets (FSSs) the building is physically 
made of.

Any set of ontology can be linked to (already expe-
rienced) ‘good solutions’ and to ‘codes of practice’ as 
well to coherency rules. By assigning values (data) to 
a KS ‘slot’ any actor-designer defines features of an 
object thus activating a ‘design proposal’ of his/her 
solution.

A ‘NEAT’ LOGICAL FORMALIZATION FOR 
NEXTGEN BUILDING MODELS
As above stated the novelty of a ‘systemic’ building 
model mainly resides on a Relation Structure - RS - 
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that selectively relates ontologies and on a Inference 
Engines that chooses the instantiation path and 
rules.

To make this possible entities of one class and 
others of another one, are related to each other by 
means of specific relationships, which an Inference 
Engine - IE - can use to perform a goal (f.i. just a sim-
ple instantiation process!). The entities and their 
ontologies on which RS and IE act are very differ-
ent, those can be procedures, HC plants, fire escape 
paths, etc.

With reference to buildings, there are two 
fundamental ontology classes: that of the spaces 
(rooms) and their aggregations, which in a project 
go to make up the so-called ‘Spatial Class’ domain, 
and that of the  physical elements (components) 
and their aggregations, which in a project make up 
the constructive apparatus, defined as a ‘Technolog-
ical Class’ domain. For a specialist actor (designer or 

user) the Building is made by her/his Spatial Class – 
Ω – and her/his Technology Class – Ω-1 – plus her/his 
RS and IE (fig. 1). The two classes both have a semi-
lattice structure. Correspondingly they are subdivid-
ed into Room Domain (hierarchic) and Elementary 
Space Domain (lattice), and Constructive Domain 
(hierarchic) and Material Domain (lattice).

The main characteristic of entities is related to 
the ‘type’ of entity: the membership “class”. This is 
formalized by means of a custom-made frame struc-
ture, similar to the one investigated by McCarthy 
(1960), by means of an ISA (Is-A) slot. Our frame has 
a four-tier structure: frame, slot, facet, value. 

This way, the model is able to manipulate also 
the type of an entity’s structure so it allows a de-
signer not only to change the inheritance of an en-
tity but also to mix entity assemblies. The freedom 
a designer obtains from this formal logic enables 
her/him to compose an entity of a class also from 

Figure 1 

Optimizing thinking in 

architectural design – new 

building: not all entities of 

domains are involved. An 

example of swapping between 

two domains: an ‘WO - 

Whole-Of - swap’ from entities 

of a Spatial Class domain – Ω 

to ones of Technology Class 

domain – Ω-1.
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entities of different classes belonging from hetero-
geneous domains, for example, a room of a ‘Spatial 
Class’ domain with a pillar of the ‘Technology Class’ 
domain. 

The Spatial Class together with the Technology 
Class contribute to define a building by means of 
the RSs that link the two domains (normally sepa-
rate) through a ‘swap’ of the composition relation-
ships WO (Whole-Of) slot allowing an assembly of 
mixed entities (fig. 1).

MENTAL/INSTANTIATION PROCESS PATH
At the time of instantiation this peculiarity makes 
it possible to simultaneously verify the constraints 
that are normally separated on ’parallel’ logical 
planes: classes of different domains.

It is important how a Relation Structure - RS -, 
by means of an Inference Engine -IE -, explores and 
populates Knowledge Structures when the designer 
wishes to instance them.

As claimed in our previous work (Fioravanti, 2011b, 
pp. 181-183 and fig. 5) the architectural (or structur-
al, or engineering, or...) concept of a Building is more 
than the sum of ontologies. Building is a system = 
goal oriented classes = RSs + ieS + ontologies. Now 
it is needed to take a closer look at an RS and its IE 
engine mechanism.

When designer wants to instance an entity it 
means s/he wants to populate entities of a class with 
value(s). We developed two implementations of in-
stantiation process in Protégé and in Common LISP.

In Protégé implementation, as stated above, 
each entity consists on a structured set of meanings, 
properties and rules; referring to the rules associ-
ated to the specific entity that is going to be instan-
tiated, there are mainly two kinds of relationships/
rules that will be checked by the system in different 
ways:
•	 Restrictions - ‘internal’ to an ontology - applied 

to properties of a class/entity by means of its 

Figure 2 

Optimizing thinking in 

architectural design – refur-

bishment: not all entities of 

domains are involved. An 

example of swapping between 

two domains: an ‘WO - 

Whole-Of - shift’ from entities 

of a Technology Class domain 

– Ω-1 to ones of Spatial Class 

domain – Ω.
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constraints (Cardinality, Type, Value or their 
combination by means of Booleans operators, 
etc.);

•	 Rules - ‘external’ to ontologies - applied to 
classes/entities by means of Proposition Logics 
algorithms.

According to this duality, there are two different 
phases: the instantiation phase and the specific 
checking/control one.

In the first one, the IE will check the consistency 
of the entity by pointing out all the restrictions ap-
plied to the Parent Class properties asking for values, 
specifications, relationships and/or links to other en-
tities or instances; depending on the specific design 
phase, the designer can specify all the requests and/
or leave some (or all of them) filled in with default 
values (blank or referred to regular values). The IE 
will then continue pointing out the missing prop-
erty specification needs, but it will also allow the 
inconsistent entity instantiation till the end of the 
overall design process when all the inconsistency, 

incoherence and incongruences should be solved.
Restrictions can represent particular ‘conditions’ ap-
plied to the entity properties; according to the in-
heritance nature of the Object Oriented Ontology 
Structure, each Class inherits all the properties of its 
own SuperClass(es); and in turn SuperClass(es) in-
herits/inherit its own properties and their associated 
Restrictions; at the SubClass level, each SubClass 
could present different “Sub” Restrictions to that (or 
other one inherited) property by associating more 
restrictive conditions.

As stated above, Restrictions could refer to dif-
ferent entity characteristics:
•	 ‘Cardinality’ requiring a certain/minimum/

maximum number of associated entities (f.i. 
<Room> has_wall min 3);

•	 ‘Value’ comparing and checking the instance 
with predefined values or range (f.i. <Wall> 
has_height min 3.5 m);

•	 ‘Type’ verifying associated class(es) to the con-
sidered one (f.i. <Window > has_Glass only 

Figure 3 

Optimizing thinking in 

architectural design – space 

metadesign: not all domains 

are involved. An example 

of not an ‘WO - Whole-Of - 

shift’, the design thinking is 

only inside the Spatial Class 

domain  – Ω.
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<Double_Glass>);
•	 ‘Combination of the above’ illustrated Restric-

tions by means of Boolean operators (And, Or, 
Not, etc).

The second phase at every design phase can control 
the overall consistency of the developed ontology 
by means of Proposition Logics algorithmic rules 
applied to specific entities: in this phase, each cal-
culation, inference, reasoning on entities’ proper-
ties and/or rules will be evaluated, checked and/or 
pointed out by listing conflicts, hierarchy changes 
on inferred relationships, values not allowed and all 
other kind of incongruence, inconsistency, incoher-
ence on the ontology, according to applied rules.

The verification process will follow a “list se-
quence” to analyze all applied rules, referring to their 
“definition/creation order”: the IE, at present, does 
not allow associating a priority to the rules, so each 
of them has the same priority level referring to oth-
ers. 

Referring to this limitation, the results of this check 
is not so clear and easily readable and understand-
able by involved actors: especially at the first design 
phases, the ongoing developed design solution are 
not coherent and consistent due to changing solu-
tion, needs, requirements and specifications and so 
the check results appears as long lists of warnings, 
compiling errors, ontology missing values, etc.

At present, the research team, considers this is-
sue one of the reason that contributes to the grow-
ing sensation that to support an effective collabora-
tion it is needed, together with actor-designers, an 
actor-manager, which operates as a Design Project 
Manager, able to handle management tools, to ana-
lyze checking results and verification processes and 
that owns enough expertise to set timing and com-
munication protocols among actor-designers to in-
dividuate their reciprocal needs.

The Common LISP implementation has a more 
powerful capacity of expressing higher abstraction 
level concepts, so it is more compact and allows to 

Figure 4 

Optimizing thinking in 

architectural design – survey: 

not all domains are involved. 

An example of not an ‘WO - 

Whole-Of - shift’, the design 

thinking is only inside the 

Technology Class domain 

– Ω-1.
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give priority to rules of I.Es.
In this case the instantiation process seems to 

be apparently simpler, as for an entity the IE sequen-
tially checks
1.	 Parent entities (by means of ISA relations) and 

assumes values, defaults and constraints if 
these ones are not in contrast with its own - a 
leaf constraint prevails on correspondent par-
ent constraint (OOP);

2.	 Then IE checks in breadth the sub-entities an 
entity (an assembly) is composed by (by means 
of WO relations);

3.	 In turn the latter explore their parent entities 
using an a) procedure.

Afterwards, in this way, the instantiation process has 
populated with value(s) all the parameters required 
- by the designer or by the default mechanism, 
whether verified or not.

This process has two drawbacks: it is ‘exhaus-
tive’ for an ontology and cannot relate two or more 
ontologies concurrently (in the same process and at 
the quasi-same time). 

This means an architect would have to define 
every space, from the building space to room space 
to elementary space, in the Space Class - Ω, an ex-
haustive and tiring process, before considering any 
building entities of the Technology Class - Ω-1. The 
same would be true for a structural engineer that 
can consider only the Technology Class - Ω-1, or a 
plant engineer and so on.

MENTAL ENERGY SAVING: SWAP FOR 
CUTTING OFF UNTIMELY ENTITIES
A clever solution to overcome these difficulties 
would be to imitate - physical digitality - what pro-
fessionals, architects in particular, have done for 
centuries, i.e. to take into account other knowledge 
domain from the beginning (for the sake of exam-
ple, Ω together with Ω-1) and ‘selectively’ explore 
the domains involved. The mind always saves and 
optimizes mental energy: it is a ‘thinking economy’. 
It is actually usual for architects, at every step of the 
design process, to define some different entities at 
different scales belonging to different ontologies. A 

master architect has the natural ability to effectively 
mix entities of different knowledge domains.

It is therefore a normal mental process to en-
close spaces by means of walls, doors, windows, etc. 
from the beginning of architectural design with-
out worrying at first sight about elementary space 
definitions and checking. That means to abandon 
instancing Space Class and go to Technology Class. 
This method has two advantages: 

To intimately relate the domains involved in the 
mental process in order to have a comprehensive vi-
sion of problems and opportunities;

To rapidly (and roughly) estimate a bill of quanti-
ties, not mere parameter costs from the very begin-
ning of the process: concept or preliminary design 
phases.

This model also clarifies what a designer does. In 
a refurbishment project a designer applies a differ-
ent method: s/he starts from a check of the deterio-
ration status of building components (wall, plaster, 
steel, reinforced concrete, woods, roof, etc.) upon 
building codes, then it checks rooms and space dis-
tributions to be refurbished, in respect to functional 
spaces requirements (fig. 2).

A third example of the use of this model is when 
the designer has to define a ‘metadesign’ project: s/
he only works inside the Spatial Class domain, and 
the result will be a parameter series of functional 
spaces (f.i., min and max sqm of an elementary space 
for a clerk with her/his desk and chair, of a standard 
patient’s room, of a hospital ward for an infectious 
diseases) (fig. 3).

A fourth example of the use of this model is 
when the designer has to make a survey of an exist-
ing building: s/he only works inside the Technology 
Class domain, and the result will be document of 
building status and its spaces (f.i. building dimen-
sioning, building component deterioration, geo-
reference of building and building parts, results of 
material test, etc.) (fig. 4).

Referring to existing implemented prototypes, 
the developed ontologies have been tested by 
means of JessRules Inference Engine applied to Pro-
tégé ontologies, combining restrictions verification 
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embedded into the Ontology Editor itself with ex-
ternal algorithms/rules editor included in JessRules 
plugin.

In this way it has been simulated the above 
mentioned design process, mixing entity definition 
(referred to Building Design) from Spatial and Tech-
nology Class domains and analyzing user feedback 
and computational results. 

At present, research is under way to apply differ-
ent inference engines and development languages 
to a series of ontologies in the fields of hospitals and 
offices.

CONCLUSIONS AND PROSPECTS
The paper affords new prospects to deal with two 
problems of architectural design process:
•	 How to define a building model that can take 

into account the complexity of a mental image 
of a real building (physical digitality);

•	 How to optimize an architectural design instan-
tiation process able to follow the usual master 
architects thinking (digital physicality).

The first objective has been tackled by means of a 
‘neat’ and sharp subdivision of building model: on-
tologies of spaces and components as usual, plus a 
Relation Structure, specific for each actor-designer 
that relates specific entities of two domains.

The second objective has been solved by mim-
icking the mental energy saving actor-designer 
does during the architectural design process s/he 
explores and defines just the essential entities s/he 
needs at each design process phase. The possibility 
to define immediately the essential information at 
different levels of detail during the work in progress 
project gives actor-designers a better control of the 
whole project of the time, so s/he can performs ap-
propriate choices. It is a matter of facts that, as we 
can see in sketches of modern master architects like 
Le Corbusier (Carrara and Fioravanti, 2004, fig. 1 and 
pg. 428), Louis Khan, Zaha Hadid, Steven Hall, Jean 
Nouvel, etc., they draw at the same time the whole 
shape and technical details of their masterpieces - 
they perform ‘concurrent’ design at different levels 
of abstraction and detail 

The ‘systemic’ building model allows better imitat-
ing the mental path actor-designers do and the vi-
sion arisen from this study can be seminal for next 
generation of CAAD tools and methodologies.
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